Short Communication

Vibrational spectrum of iodine trifluoride *

MARTIN SCHMEISSER, DIETER NAUMANN AND ELEFTHERIA LEHMANN

Lehrstuhl für Anorganische Chemie der Universität Dortmund, 46 Dortmund-Hombruch (West Germany)

(Received June 9, 1973)

A vibrational study of iodine trifluoride has not been possible until now owing to its extremely low thermal stability and vapour pressure. However a planar T structure has been deduced for the IF₃ group from the infrared spectra of complexes of iodine trifluoride with organic bases, *i.e.* pyridine and quinoline¹. Previously it was suggested¹ that solid IF₃ consists of dimers or polymers associated through fluorine bridges, the compound existing in an ionic form as $IF_2+IF_4^-$.

In this present study we have succeeded in recording the infrared spectrum of solid IF₃ through the use of a new low-temperature technique recently reported by Bayersdorfer, Minkwitz and Jander². In Figure 1 the infrared spectrum of solid IF₃ at -100° is depicted, and the observed frequencies are listed in Table 1 together with those of gaseous ClF₃ and BrF₃³ as well as matrix-isolated BrF₃⁴. All recorded spectra showed some bands at approximately 205, 320, 375 and 600 cm⁻¹. When the samples were warmed to -20° the intensities of these bands increased, while the characteristic absorptions of IF₃ disappeared. Since IF₃ decomposes to I₂ and IF₅ during preparation, these bands were assigned to the v_9 , v_3 , v_8 and v_2 vibrational modes of IF₅ respectively⁵.

Only five of the six fundamentals expected for a T-shaped IF₃ molecule are unambiguously observed in the spectrum of solid IF₃ (Table 1). The highest frequency band (*ca.* 640 cm⁻¹) may be assigned to the shortest I–F bond, the observed splitting being probably due to site group symmetry. The broad absorption band at about 480 cm⁻¹ indicates strong association through fluorine bridges. Since the same band is also the most intense band in the infrared spectrum of solid IF₃•py⁶ and almost disappears in the Raman spectrum, this has been assigned to the asymmetric F–I–F stretching mode.

The symmetric mode could not be observed with certainty. In solid $IF_3 \cdot py^6$, $v_8(F-I-F)$ occurs at *ca*. 545 cm⁻¹ and is a very strong, distinct band in the Raman spectrum. For this reason, the shoulder at 550 cm⁻¹ (see Fig. 1) has been assumed to be the symmetric F-I-F mode in solid IF_3 .

^{*} Abstracted from E. LEHMANN, Dissertation, Dortmund, 1973.

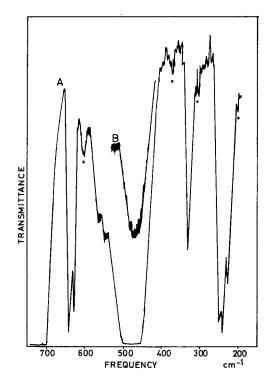


Fig. 1. The infrared spectrum of IF₃ at -100° . Trace A: mole ratio IF₃: Nujol/n-pentane = 1:3; Trace B: mole ratio IF₃: Nujol/n-pentane = 1:6. + IF₅ absorption bands.

The $v_s(F-A-F)$ stretching frequency increases slightly in the series ClF₃, BrF₃ and IF₃ (Table 1) whereas the $v_{as}(F-A-F)$ frequency decreases considerably with increasing size of the central atom. Hence, the asymmetric F–I–F stretching mode of iodine trifluoride, in contrast to that of ClF₃ and BrF₃, occurs at lower wave numbers than the symmetric mode. The fact that similar smooth trends are observed in the corresponding series of anions ClF₄⁻, BrF₄⁻ and IF₄⁻⁷ lends additional support to the assignment given.

The bands at 331, 240 and 228 cm⁻¹ have been assigned to the $\delta_{as}(in \text{ plane})$, $\delta(\text{out of plane})$ and $\delta_s(in \text{ plane})$ deformation modes, respectively. The assignment has been made in complete analogy with ClF₃ and BrF₃. As already mentioned, no explanation can be given for the splitting of the I-F' stretching mode and of the $\delta(\text{out of plane})$ deformation mode (see Fig. 1).

Studies of the Raman spectrum of solid IF_3 are at present in progress and Raman polarization measurements are being made on its solutions in acetonitrile. From these experiments it is hoped to obtain more detailed information on the structure of IF_3 .

THE VIBRATIONAL	SPECTRUM* O	F IF ₃ AND ITS	ASSIGNA	MENT IN	COMPARISON	TO ISOELECTRO	THE VIBRATIONAL SPECTRUM ⁴ OF IF ₃ and its assignment in comparison to isoelectronic CIF ₃ and BrF ₃
$\operatorname{CIF}_3(g)^3$		$\operatorname{BrF}_3(g)^3$			BrF ₃ ⁴ (matrix isolated)	IF ₃ (s)	Assignment in point group C_{2v}
Raman	IR	Raman	R		IR	IR	
752.1 744.7 } (p,s)	$\frac{742}{760} \right\} (s)$	675 (p,s)	668 682	(s)	672 (s)	$\begin{array}{c} 640\\ 628 \end{array} \right\} (s)$	ν ₁ (A ₁) ν(A-B)
n.o.	702 (vs)	612 (vvw)	604 614 621	(vs)	592 (vs)	480 (vs)	$\nu_4(B_1)$ $\nu_{as}(B-A-B)$
529,3 (p,s)	$\left. \begin{array}{c} 538\\ 522 \end{array} \right\} (m)$	552 (p,vs)	547 557	(m)	545 (mw)	[550 (mw)]	ν ₂ (A ₁) ν ₈ (B-A-B)
431 (dp,w)	442 (w)	n.o.	342 350 359	(wv) -	346 (mw)	331 (m)	v₅(B₁) ðas(in plane)
$\begin{array}{c} 337\\ 321 \end{array} \right\} (p,w)$	328 (s)	п.о.	242 (s)	•	250 (m)	$\begin{array}{c} 240 \\ 245 \end{array} \right\} \begin{array}{c} (s) \end{array}$	$v_6(B_2)$ $\delta(out of plane)$
n.o.	328 (s)	233† (p,w)	242 (s)		235 (mw)	228 (m)	$\nu_3(\mathbf{A_1}) \delta_{\mathbf{s}}(\text{in plane})$
	•						

TABLE 1

Observed frequencies in cm⁻¹.
† For liquid BrF₃ (see ref. 4).
n.o. = not observed; g = gas; s = solid.

Our infrared study of solid iodine trifluoride confirms the expected trigonalbipyramidal structure for IF₃ molecules. The formation of fluorine bridges apparently involves the two axial rather than the two equatorial fluorine atoms. Our observations do not support the assumption that IF_2^+ and IF_4^- ions are present and solid IF₃ does not apparently exist in the ionic form $IF_2^+IF_4^-$, but like BrF_3 associates preferentially through covalent fluorine bridges as in the following structure:

 $\begin{array}{c} F \\ F \\ F \\ F \end{array} > I < \begin{array}{c} F \\ F \\ F \\ F \end{array} > I < \begin{array}{c} F \\ F \\ F \end{array} > I < \begin{array}{c} F \\ F \\ F \end{array}$

Calculations of the vibrational force constants are at present in progress.

Experimental

Iodine trifluoride was prepared from the elements at -45° in CCl₃F¹ and stored at -78° . The apparatus used for the low-temperature studies has been reported elsewhere recently². The samples were prepared as mulls using a Nujol/npentane mixture at -78° in an inert gas atmosphere and then cooled down to -100° for IR measurements. The infrared spectra were recorded on a Beckman IR 12 spectrophotometer in the range 4000–200 cm⁻¹ using polyethylene sheets of 0.45 mm thickness as windows.

We would like to thank Prof. R. Minkwitz, Freie Universität Berlin, for the low-temperature infrared measurements, and the Stiftung Volkswagenwerk and Landesamt für Forschung des Landes Nordrhein-Westfalen for financial support.

REFERENCES

- 1 M. SCHMEISSER, W. LUDOVICI, D. NAUMANN, P. SARTORI AND E. SCHARF, *Chem. Ber., 101* (1968) 4214.
- 2 L. BAYERSDORFER, R. MINKWITZ AND J. JANDER, Z. Anorg. Allgem. Chem., 392 (1972) 137.
- 3 H. SELIG, H. H. CLAASSEN AND J. H. HOLLOWAY, J. Chem. Phys., 52 (1970) 3517.
- 4 K. O. CHRISTE, E. C. CURTIS AND D. PILIPOVICH, Spectrochim. Acta, 27A (1971) 931.
- 5 L. E. ALEXANDER AND I. R. BEATTIE, J. Chem. Soc. (A), (1971) 3091.
- 6 E. LEHMANN, D. NAUMANN AND M. SCHMEISSER, to be published.
- 7 K. O. CHRISTE AND D. NAUMANN, Inorg. Chem., 12 (1973) 59.